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1 Introduction

If {an} is the sequence a1, a2, a3, . . . , an, . . ., then the sum

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + an+1 + · · ·

is called an infinite series, or simply a series. Often, we can write
∑∞

n=1 an as
∑

an).

The an, n = 1, 2, 3, . . ., are called the terms of the series; an is called the general term.

Associated with every infinite series
∑

an, there is a sequence of partial sums {Sn} whose

terms are defined by

S1 = a1,

S2 = a1︸︷︷︸
=S1

+a2 = S1 + a2,

S3 = a1 + a2︸ ︷︷ ︸
=S2

+a3 = S2 + a3,

Sn =
n∑

m=1

am

= a1 + a2 + a3 + · · ·+ an−1︸ ︷︷ ︸
=Sn−1

+an

= Sn−1 + an, and so on.

The term Sn =
∑n

m=1 am = a1 + a2 + · · · + an of this sequence is called the nth partial

sum of the series.

2 Convergent Series

An infinite series
∑∞

n=1 an is said to be convergent if the sequence of partial sums {Sn}
converges. That is,

lim
n→∞

Sn = lim
n→∞

n∑
m=1

am = L.

The number L is the sum of the series. If lim
n→∞

Sn = L does not exist, the series is said to

be divergent.
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EXAMPLE

Show that the series
∑ 1

(n+ 4)(n+ 5)
is convergent.

solution

Considering the general term of the series:

an =
1

(n+ 4)(n+ 5)

=
1

n+ 4
− 1

n+ 5
.

The nth partial sum of the series is

Sn =

[
1

5
− 1

6

]
+

[
1

6︸ ︷︷ ︸−
1

7

]
+

[
1

7︸ ︷︷ ︸−
1

8

]
+︸︷︷︸ · · ·+

[
1

n+ 4

]
︸ ︷︷ ︸−

1

n+ 5

=
1

5
− 1

n+ 5
.

Since

lim
n→∞

Sn = lim
n→∞

(
1

5
− 1

n+ 5

)
= 1/5

= L,

the series converges, and we write∑ 1

(n+ 4)(n+ 5)
=

1

5
.

remark:

Because of the manner in which the general term of this sequence of partial sums “col-

lapses” to two terms, this series known as a telescoping series.

EXAMPLE

Show that the series
∑

ln
(
1 + 1/n

)
is divergent.

solution

Partial sum:

Sn =
n∑

m=1

ln

(
1 +

1

m

)
=

n∑
m=1

ln

(
m+ 1

m

)
=

n∑
m=1

(
ln(m+ 1)− lnm

)
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= (ln 2− ln 1) + (ln 3− ln 2) + (ln 4− ln 3) + · · ·+
(
ln(n)− ln(n− 1)

)
+
(
ln(n+ 1)− lnn

)
= − ln 1 + ln(n+ 1)

= ln(n+ 1) since ln 1 = 0.

As n → ∞, n+1 → ∞, so Sn = ln(n+1) → ∞. Hence, lim
n→∞

Sn = L does not exist,

and the series diverges.

EXAMPLE

If Sn denotes the nth partial sum of
∑ 3

(3n− 2)(3n+ 1)
, show that

Sn = 1− 1

3n+ 1
.

Deduce that the series converges. What is its sum?

solution

Partial sum:

Sn =
n∑

m=1

3

(3m− 2)(3m+ 1)

=
n∑

m=1

(
1

3m− 2
− 1

3m+ 1

)
=

(
1

1
− 1

4

)
+

(
1

4︸ ︷︷ ︸−
1

7

)
+

(
1

7︸ ︷︷ ︸−
1

10

)
+

(
1

10︸ ︷︷ ︸−
1

13

)
+︸ ︷︷ ︸ · · ·

+

(
1

3n− 5︸ ︷︷ ︸−
1

3n− 2

)
+

(
1

3n− 2︸ ︷︷ ︸−
1

3n+ 1

)

= 1− 1

3n+ 1
.

As n → ∞, Sn → 1 since 1
3n+1

→ 0. Hence, the series converges to the sum of

L = lim
n→∞

Sn = 1.
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2.1 Geometric Series

A geometric series is a series having the form

∞∑
n=0

arn = a+ ar + ar2 + ar3 + · · ·+ arn−1 + arn + · · ·

and its sum,

Sn =
n−1∑
m=0

arm

= a+ ar + ar2 ++ · · ·+ arn−1

= a

(
1− rn

1− r

)
if r ̸= 1,

where r is the common ratio. The series converges for |r| < 1 since lim
n→∞

Sn =
a

1− r
. Note

that rn → 0 as n → ∞ for |r| < 1, and diverges for |r| ≥ 1.

EXAMPLE

Determine the nth partial sum of
∑

(3/4)n+1, and determine if the series converges.

solution

Series:

∞∑
n=0

(
3

4

)n+1

=
3

4
+

(
3

4

)2

+

(
3

4

)3

+

(
3

4

)4

+ · · ·+
(
3

4

)n

+ · · · .

This is a geometric series with a = 3/4 and r = 3/4 < 1. Thus,

Sn =
3

4

(
1− (3/4)n

1− 3/4

)
= 3

(
1− (3/4)n

)
.

As n → ∞, (3/4)n → 0 (since 3n < 4n), so

lim
n→∞

Sn = L = 3.

The series converges with the sum of 3.
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2.2 A Test for Divergent

If an is the general terms of a series, and Sn is the corresponding sequence of partial sums,

then an = Sn − Sn−1 (since Sn = Sn−1 + an).

Now, if the series converges to a number L, we have lim
n→∞

Sn = L, and lim
n→∞

Sn−1 = L.

This implies that

lim
n→∞

an = lim
n→∞

(
Sn − Sn−1

)
= lim

n→∞
Sn − lim

n→∞
Sn−1

= L− L

= 0.

That is,

if
∞∑
n=1

an converges, then lim
n→∞

an = 0.

On the other hand, if lim
n→∞

an = 0, we cannot deduce that the series
∑

an converges. We

can at least say that if lim
n→∞

an ̸= 0, then the series must diverge.

Test for a divergence series:

If lim
n→∞

an ̸= 0 then
∞∑
n=1

an diverges.

EXAMPLE

Consider the series
∑ n

n− 1
. Rewriting the general term of the series as

an =
n

n− 1

=
(n− 1) + 1

n− 1

= 1 +
1

n− 1
.

Since

lim
n→∞

an = lim
n→∞

(
1 +

1

n− 1

)
= 1

̸= 0,

the series diverges by the nth term test for divergence.
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EXAMPLE

Consider the infinite series
∑ 4n− 1

5n+ 3
.

Here an =
4n− 1

5n+ 3
. It follows from the test for a divergent series that this series

must diverge, since

lim
n→∞

an = lim
n→∞

4n− 1

5n+ 3
= lim

n→∞

4− 1/n

5 + 3/n
= 4/5 ̸= 0.

EXAMPLE

Consider the p-series,
∑ 1

n4
. Since

lim
n→∞

an = lim
n→∞

1

n4

= 0,

we cannot conclude whether this series converges or diverges by the nth term test

for divergence.

3 Positive Term Series

A series of the form
∑∞

n=1 an, where every an > 0, is called positive term series. The

sequence of partial sums, Sn =
∑n

m=1 am (all am > 0), is monotonically increasing. That

is, Sn−1 < Sn < Sn+1 for all n.

There are only two possibilities to consider:

(1) Sn increases without bound. That is, Sn → ∞ as n → ∞, and the series must

diverge.

Sn

n

(2) The partial sums are bounded above by some constant K, such that Sn < K for

all n. Hence, Sn must approach to some limit (≤ K), and the series must converge

(monotonic convergence theorem).
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Sn

n

K

3.1 Comparison Test

It is often possible to determine convergence or divergence of a series
∑

an by comparing

its terms with the terms of a “test series”
∑

bn that is known to be convergent or divergent.

Suppose
∑

an (represents a “smaller series”) and
∑

bn (“larger series”) are two positive

term series, such that

0 ≤ an ≤ bn for all n (or at least for sufficiently large n.)

• If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.

(If the larger series converges, the smaller series must converge).

n

K ∑
bn

∑
an

• If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

(If the smaller series diverges, the larger series must diverge).

n

∑
an

∑
bn
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Common standard series used for comparison:

• Geometric series:∑
arn converges to

a

1− r
if |r| < 1, and diverges if |r| ≥ 1.

• p-series: ∑ 1

np
= 1 +

1

2p
+

1

3p
+ · · ·+ 1

np
+ · · ·

converges if p > 1, and diverges if p ≤ 1.

If p = 1, the divergent series
∑ 1

n
is called harmonic series.

EXAMPLE

Test for convergence of
∑ n

n3 + 4
.

solution

We observe that

n

n3 + 4
<

n

n3
=

1

n2
since n3 + 4 > n3 for all n.

Because the larger series
∑ 1

n2
(p-series, p = 2 > 1) converges, then the smaller

series
∑ n

n3 + 4
must converge by the comparison test.

EXAMPLE

Test for convergence of
∑ ln(n+ 2)

n
.

solution

Since ln(n+ 2) > 1 for n ≥ 1, we have

ln(n+ 2)

n
>

1

n
.

Since the smaller series
∑ 1

n
(p-series, n = 1) is a divergent harmonic series, then

by the comparison test the larger series
∑ ln(n+ 2)

n
must diverge.
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EXAMPLE

Consider the series
∑ 100 + cos(5n)

n3
.

solution

Since cos(5n) ≤ 1, we have

100 + cos(5n) ≤ 101

⇒ 100 + cos(5n)

n3
≤ 101

n3

Since the larger series ∑ 101

n3
= 101

∑ 1

n3
,

which is a p-series with p = 3 > 1, is a convergent series, then
∑ 100 + cos(5n)

n3

also converges.

3.2 Limit Comparison Test

Suppose
∑

an and
∑

bn are positive term series, and that

lim
n→∞

an
bn

= c.

Then,

• if c > 0, then both series either convergent or divergent.

• if c = 0 and
∑

bn converges, then
∑

an converges.

• if c = ∞ and
∑

bn diverges, then
∑

an diverges.

The limit comparison test is often applicable to series for which the comparison test is

inconvenient.

EXAMPLE

Test for convergence of
∑ n

(8n5 + 7)1/3
.

solution

For large n values, the general term of this series an =
n

(8n5 + 7)1/3
“behaves” like

n

(n5)1/3
=

n

n5/3
=

1

n2/3
.
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Let
∑

bn =
∑ 1

n2/3
be the test series, we have

lim
n→∞

an
bn

= lim
n→∞

(
n

(8n5 + 7)1/3
× n2/3

1

)
= lim

n→∞

n5/3

(8n5 + 7)1/3

= lim
n→∞

(
n5

8n5 + 7

)1/3

= lim
n→∞

(
1

8 + 7
n5

)1/3

=
(
1/8

)1/3
= 1/2.

Here, c = 1/2 > 0, and both series either converge or diverge. Since
∑

bn =∑ 1

n2/3
is a divergent p-series (p = 2/3 < 1), then

∑ n

(8n5 + 7)1/3
must diverge

by the limit comparison test.

EXAMPLE

Test for convergence of
∑ n3 + 5n−

√
n+ 2

n5 + 5
.

solution

For large n values, the general term of this series behaves like

n3 + 5n−
√
n+ 2

n5 + 5
∼ n3

n5
=

1

n2
.

Let
∑

bn =
∑ 1

n2
be the test series (convergent p-series), we have

lim
n→∞

an
bn

= lim
n→∞

(
n3 + 5n−

√
n+ 2

n5 + 5
× n2

1

)
= lim

n→∞

n5 + 5n3 − n5/2 + 2n2

n5 + 5

= lim
n→∞

1 + 5
n2 − 1

n5/2 +
2
n3

1 + 5
n5

= 1.

Here c = 1 > 0, and both series converge or diverge. Since
∑

bn =
∑ 1

n2
con-

verges, then the series
∑ n3 + 5n−

√
n+ 2

n5 + 5
also converges by the limit comparison

test.
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3.3 Ratio Test

Ratio test is useful when an involves factorials and nth powers of a constant or n.

Suppose
∑

an is a positive term series, such that

lim
n→∞

an+1

an
= L.

Then,

• if L < 1, the series converges;

• if L > 1, the series diverges;

• if L = 1, the ratio test is inconclusive (no indication of whether the series converges

or diverges).

EXAMPLE

Test for convergence of
∑ 5n

n!
.

solution

Here an =
5n

n!
, then

an+1 =
5n+1

(n+ 1)!

=
5n 5

(n+ 1)n!
,

⇒ lim
n→∞

an+1

an
= lim

n→∞

(
5n 5

(n+ 1)n!
× n!

5n

)
= lim

n→∞

5

n+ 1

= 0

= L.

Since L = 0 < 1, this series must converge by the ratio test.
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EXAMPLE

Test for convergent of
∑ nn

n!
.

solution

Here an =
nn

n!
. Then,

an+1 =
(n+ 1)n+1

(n+ 1)!

=
(n+ 1)(n+ 1)n

(n+ 1)n!

=
(n+ 1)n

n!
,

⇒ lim
n→∞

an+1

an
= lim

n→∞

(
(n+ 1)n

n!
× n!

nn

)
= lim

n→∞

(n+ 1

n

)n

= lim
n→∞

(
1 + 1/n

)n
= e.

Since L = e > 1, this series must diverge by the ratio test.

EXAMPLE

Test for convergence of
∑ 2n

(2n)!
.

solution

Here an =
2n

(2n)!
. Then,

an+1 =
2n+1

(2n+ 2)!

=
2n+1

(2n+ 2)(2n+ 1)(2n)!

=
2n

(n+ 1)(2n+ 1)(2n)!
,

⇒ lim
n→∞

an+1

an
= lim

n→∞

(
2n

(n+ 1)(2n+ 1)(2n)!
× (2n)!

2n

)
= lim

n→∞

1

(n+ 1)(2n+ 1)

= 0.

Since L = 0 < 1, this series converges by the ratio test.
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EXAMPLE

The ratio test will give inconclusive answer when applied to a p-series
∑ 1

np
:

lim
n→∞

an+1

an
= lim

n→∞

np

(n+ 1)p

= lim
n→∞

(
n

n+ 1

)p

= lim
n→∞

(
1− 1

n+ 1

)p

= 1p

= 1 = L for all p values.

4 Alternating Series

A series having either form,

a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an + · · · =
∞∑
n=1

(−1)n+1 an,

−a1 + a2 − a3 + a4 − · · ·+ (−1)nan + · · · =
∞∑
n=1

(−1)n an,

where an > 0 for n = 1, 2, 3, . . ., and the terms are alternately positive and negative, is

said to be an alternating series. For example,

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · ;

∞∑
n=2

(−1)n
lnn

2n
=

ln 2

4
− ln 3

8
+

ln 4

16
− ln 5

32
+ · · · ;

∞∑
n=0

cos(nπ)

n2 + 1
=

∞∑
n=0

(−1)n

n2 + 1
= 1− 1

2
+

1

5
− 1

10
+

1

17
+ · · · .

4.1 Alternating Series Test

Consider the series
∑

(−1)n+1an, where each an > 0.

If lim
n→∞

an = 0 and an+1 < an for all n, then the series converges.
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EXAMPLE

Show that the alternating harmonic series
∑ (−1)n+1

n
converges.

solution

Here an =
1

n
, and an+1 =

1

n+ 1
. We have

lim
n→∞

an = lim
n→∞

1

n
= 0,

and
1

n+ 1
<

1

n
⇒ an+1 < an for all n.

Since lim
n→∞

an = 0 and an+1 < an for all n (an is monotonically decreasing to zero),

it follows that the alternating harmonic series converges.

EXAMPLE

Test for convergence of
∑

(−1)n+1

√
n

n+ 1
.

solution

Here an =

√
n

n+ 1
and an+1 =

√
n+ 1

n+ 2
. To show that the terms of the series satisfy

the condition an+1 < an, we let f(n) = an =

√
n

n+ 1
. From

f ′(n) =
df

dn
=

d

dn

( √
n

n+ 1

)

=

1
2
√
n
(n+ 1)−

√
n (1)

(n+ 1)2

=
1
2
(n+ 1)− n
√
n(n+ 1)2

=
1
2
(1− n)

√
n(n+ 1)2

=
−(n− 1)

2
√
n(n+ 1)2

,

we can see that f ′(n) < 0 for n > 1. That is, function f(n) decreases for n > 1.

Thus, an+1 < an is true for n > 1. Also,

lim
n→∞

an = lim
n→∞

√
n

n+ 1
= 0.

Hence, this series converges by the alternating series test.
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EXAMPLE

Consider
∑

(−1)n+1 2n+ 1

3n− 1
.

solution

Since

lim
n→∞

an = lim
n→∞

2n+ 1

3n− 1

= lim
n→∞

2 + 1
n

3− 1
n

= 2/3

̸= 0,

the series diverges by the alternating series test.

4.2 Error in Approximating the Sum of an Alternating Series

Suppose the alternating series
∑

(−1)n+1an, where an > 0, converges to a number L. If

Sn is the nth partial sum of the series, and an+1 < an for all n values, then∣∣L− Sn

∣∣ ≤ an+1 for all n.

The error of the series is less than the absolute value of the (n+ 1)th term of the series.

4.3 Absolute Convergence

If
∑

an is absolutely convergent, that is, if
∑

|an| converges, then
∑

an converges.

However, if
∑

|an| diverges, we cannot deduce that
∑

an diverges.

proof:

If bn = an + |an|, then bn ≤ 2|an|. Since
∑

|an| converges, it follows from the comparison

test that
∑

bn must converge. Furthermore,
∑(

bn−|an|
)
converges, since both

∑
bn and∑

|an| converge. Therefore,
∑

an converges, since
∑

an =
∑(

bn − |an|
)
.

EXAMPLE

The alternating series
∑ (−1)n+1

n2
is absolutely convergent, since∑∣∣∣∣(−1)n+1

n2

∣∣∣∣ = ∑ 1

n2

is a convergent p-series (with p = 2 > 1).
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EXAMPLE

Test for convergence of
∑ (−1)n+1

n2 + 1
.

solution

The series ∑
|an| =

∑∣∣∣∣(−1)n+1

n2 + 1

∣∣∣∣
=

∑ 1

n2 + 1

is absolutely convergent by the comparison test with the test series
∑ 1

n2
(p-series

with p = 2 > 1), since
1

n2
>

1

n2 + 1
for n ≥ 1.

Therefore, this series converges by the absolute convergence theorem.

EXAMPLE

Show that
∑ 1 + 2 sin(n)

n2
is convergent.

solution

Consider the series:∑∣∣∣∣1 + 2 sin(n)

n2

∣∣∣∣ = ∑ |1 + 2 sin(n)|
n2

(positive term series).

Noting that ∣∣1 + 2 sin(n)
∣∣ ≤ 3 since |sin(n)| ≤ 1,

then ∣∣1 + 2 sin(n)
∣∣

n2
≤ 3

n2
.

But, the series ∑ 3

n2
= 3

∑ 1

n2

is a convergent p-series (p = 2 > 1), and by the comparison test
∑ |1 + 2 sin(n)|

n2

also converges. This implies that
∑∣∣∣∣1 + 2 sin(n)

n2

∣∣∣∣ is absolutely convergent. Hence,∑ 1 + 2 sin(n)

n2
converges by the absolute convergence theorem.
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4.4 Conditionally Convergent Theorem

A series
∑

an is said to be conditionally convergent if
∑

|an| diverges and
∑

an converges.

EXAMPLE

Consider the alternating harmonic series,
∑ (−1)n+1

n
.

Let an =
1

n
. Then, an+1 =

1

n+ 1
, and

1

n+ 1
<

1

n
since n+ 1 > n for n > 0.

Hence an+1 < an for n > 0. Also,

lim
n→∞

an = lim
n→∞

1

n
= 0.

Therefore, the series converges by the alternating series test. But,∑
|an| =

∑∣∣∣∣(−1)n+1

n

∣∣∣∣ = ∑ 1

n

is a divergent harmonic series. Hence, this series conditionally converges.



20 Infinite Series

5 Review Questions

[1] If Sn denotes the nth partial sum of
∞∑

m=1

3

(3m− 2)(3m+ 1)
, show that

Sn = 1− 1

3n+ 1
.

Deduce that the series converges. What is its sum?

[2] If Sn denotes the nth partial sum of
∞∑

m=1

3m− 2

m(m+ 1)(m+ 2)
, show that

Sn = 1 +
1

n+ 1
− 4

n+ 2
.

Deduce that the series converges. What is its sum?

[3] Determine the nth partial sum of each of the following series, and hence determine

whether the series converges:

(a)
∞∑

m=1

(−1)m+1

m(m+ 2)
;

(b)
∞∑
n=0

(
3/4

)n+1
;

(c) 2− 4/3 + 8/9− 16/27 + 32/81 + · · · − · · · .

[4] For the series
∞∑

m=1

log
(m+ 1)2

m(m+ 2)
, show that the nth partial sum is

Sn = log 2 + log
n+ 1

n+ 2
.

Deduce that the series converges. What is its sum?

[5] Use the comparison test to determine which of the following series converge:

(a)
∑ n

100n2 + 1
;

(b)
∑ 1

n
√
n3 + 1

;

(c)
∑ m

(m+ 2)(m+ 1)
;

(d)
∑ k + 2√

k (k + 1)2
;

(e)
∑ 2k + 3

k2 + 5
.
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[6] Determine which of the following series converge:

(a)
∑ n2

2n
;

(b)
∑ 3n

n2
;

(c)
∑ 1

5n
;

(d)
∑ 2n

n!
;

(e)
∑ n 10n

(n+ 1)!
;

(f)
∑ n3

5n
;

(g)
∑ (n!)2

(2n)!
.

[7] Determine which of the following series converge:

(a)
∑

(−1)n
1√
n
;

(b)
∑

(−1)n
n

3n+ 1
;

(c)
∑ (−1)n

n2 + 1
;

(d)
∑ (−1)m√

m3 + 1
.

[8] Show that the series ∑ sin(nθ)

n2
and

∑ cos(nθ)

n2

are absolutely convergent for all θ.

[9] Determine, with reasons, which of the following series converge:

(a)
∑ 1

n(n+ 1)
;

(b)
∑

(−1)n
3n−2

4n+1
;

(c)
∑ 2(−1)n√

4n+ 1
;

(d)
∑ 4m2

2m
;

(e)
∑ 1√

4n3 + log n
;

(f)
∑ en

n!
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(g)
∑(

5

6

)n(
n+ 2

n+ 1

)
;

(h)
∑ (m+ 2)!

m!m2
;

(i)
∑ 3kk!

kk
;

(j)
∑ m

2m2 .



Lecture Notes – MATH2118 Further Engineering Mathematics C 23

6 Answers to Review Questions

[1] lim
n→∞

Sn = 1

[2] lim
n→∞

Sn = 1

[3] (a) Sn = 1
2

[
1
2
+ (−1)n

(
1

n+2
− 1

n+1

)]
; series converges with a sum of 1/4.

(b) Sn = 3
(
1− (3/4)n

)
; series converges with a sum of 3.

(c) Sn = 6
5

(
1− (−2/3)n

)
; series converges with a sum of 6/5.

[4] Series converges with a sum of log 2.

[5] (a) Divergent

(b) Convergent

(c) Divergent

(d) Convergent

(e) Divergent

[6] (a) Convergent

(b) Divergent

(c) Convergent

(d) Convergent

(e) Convergent

(f) Convergent

(g) Convergent

[7] (a) Convergent

(b) Divergent

(c) Convergent

(d) Convergent

[8] Not available.

[9] (a) Convergent; comparison test.

(b) Convergent geometric series (common ratio, r = −3/4).

(c) Convegent; alternating series test.
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(d) Convergent; ratio test.

(e) Convergent; comparison test.

(f) Convergent; ratio test.

(g) Convergent; ratio test.

(h) Divergent; test for a divergent series.

(i) Divergent; ratio test.

(j) Convergent; ratio test.


